

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Structural, mechanical, and electronic properties of TaB₂, TaB, IrB₂, and IrB: First-principle calculations

Wen Jie Zhao, Yuan Xu Wang*

Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, People's Republic of China

ARTICLE INFO

ABSTRACT

Article history: Received 25 December 2008 Received in revised form 27 July 2009 Accepted 29 July 2009 Available online 5 August 2009

PACS: 71.20.Be 71.15.Mb 64.30.+t 81.05.Zx

Keywords: Tantalum diboride Iridium diboride Bulk modulus Elastic properties

1. Introduction

Transition metal borides are of great interest in both fundamental science and technical application [1–14]. Experimentally, ReB_2 and WB_2 are found in the hexagonal phase with PG_3/mmc and P6/mmm space group [12–14]. Theoretically, Hao et al. confirmed that ReB₂ and WB₂ can be regarded as potential candidates of ultra-incompressible and hard materials [1]. Recently, osmium diboride has been synthesized by Cumberland et al. [2]. Their results indicated that OsB₂ is an ultra-incompressible material. The calculations by Wang show that hexagonal TcB₂ is a potential superhard material in term of its large elastic modulus and large G/B value [7]. Gu et al. [11] synthesized WB₄ and the measured average hardness is very high exceeding 46.2 GPa, comparable to that (45–50 GPa) of *c*-BN. Wang et al. predicted that five other transition metal B compounds (TMB₄, TM = Re, Mo, Ta, Os, and Tc with the WB₄ structure are potential superhard materials [9].

TaB₂, similar to ZrB₂ and HfB₂, has the hexagonal AlB₂-like structure (*P*6/*mmm*) [15]. The experimental lattice constants are a = 3.088 A, c = 3.241 A in Ref. [16] and a = 3.082 A, c = 3.243 A in Ref. [17]. TaB₂ has a high melting point (3200 °C) [18], high

E-mail address: wangyx@henu.edu.cn (Y.X. Wang).

First-principle calculations were performed to investigate the structural, elastic, and electronic properties of TaB₂, TaB, IrB₂, and IrB. The calculated equilibrium structural parameters, shear modulus, and Young's modulus of TaB₂ are well consistent with the available experimental data, and TaB₂ with *P*6/*mmm* space group has stronger directional bonding between ions than WB₂, OsB₂, IrN₂, and PtN₂. For TaB₂, the hexagonal *P*6/*mmm* structure is more stable than the orthorhombic *Pmmn* one, while for IrB₂ the orthorhombic *Pmmn* structure is the most stable one. The high shear modulus of *P*6/*mmm* phase TaB₂ is mainly due to the strong covalent *π*-bonding of B-hexagon in the (0001) plane. Such a B-hexagon network can strongly resist against an applied [1120] (0001) shear deformation. Correlation between the hardness and the elastic constants of TaB₂ was discussed. The band structure shows that *P*6/*mmm* phase TaB₂ and *Pmmn* phase IrB₂ are both metallic. The calculations show that both TaB and IrB are elastically stable with the hexagonal *P*6₃/*mmc* structure.

© 2009 Elsevier Inc. All rights reserved.

hardness (24.5 GPa) [19], good thermal and electrical conductivity, and resistance to most acids and bases [18]. Recently, phase pure TaB₂ powder was synthesized using reduction of Ta₂O₅ by B₄C and graphite at 1600 °C in an alumina tube furnace under following Ar [20]. The measured Young's modulus of TaB₂ was 551 GPa, which was higher than ZrB₂ and HfB₂. In addition, shear modulus of 228 GPa and hardness of 25.6 GPa were observed for TaB₂. The most interesting results were that, under the same value of load (4.9 N), the measured hardness (25.6 GPa) [20] of TaB₂ is larger than that of ReB₂ (18.4 GPa) [21]. This combination of properties makes it potentially useful in applications including cutting tools, high temperature crucibles and thermal protection components.

However, neither the structural nor the electronic properties of TaB_2 have been studied theoretically yet. In this work, we performed density functional calculation on the electronic and elastic properties of TaB_2 and compared the results with the experiment. TaB, IrB, and IrB₂ were also studied in the present work.

2. Computational detail

The calculations presented in this study were performed within the density functional theory, using the projector-augmented wave (PAW) method [22,23] as implemented in Vienna

^{*} Corresponding author. Fax: +86 378 3881602.

^{0022-4596/\$ -} see front matter \circledcirc 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2009.07.054

Fig. 1. Hexagonal structure of TaB₂ with space group *P*6/*mmm*, The large green and small blue spheres represent the Ta and B atoms, respectively. The shortest B-B bond and Ta-B bond are 1.788 Å and 2.448 Å, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

ab initio simulation package (VASP) [24-26]. Both the generalized gradient approximation (GGA) [27] and the local density approximation (LDA) [28] were used with the PAW potential. The structure was optimized with the conjugate-gradient algorithm method. A plane wave cutoff energy of 500 eV was employed throughout. The calculations were performed using a (18,11,13) Monkhorst-Pack mesh which corresponds to 420 k-points in the irreducible Brillouin zone of the orthorhombic Pmmn structure. The structure optimization of hexagonal TaB₂ and IrB₂ has been performed under the symmetry restriction of space group P6/mmm and $P6_3/mmc$, which are same as those of AlB₂ and ReB₂, respectively. The computational condition for hexagonal TaB₂ and IrB₂ is same as that of the orthorhombic one except the different Monkhorst-Pack mesh (16,16,16) for P6/mmm phase and (22,22,10) for P6₃/mmc phase. For the hexagonal P6₃/mmc TaB and IrB, the calculations were performed using a (16,16,16) Monkhorst-Pack mesh which corresponds to 270 k-points in the irreducible Brillouin zone. In addition, the calculations of temperature dependence of bulk modulus and volume are carried out with quasi-harmonic approximation.

The optimized *P6/mmm* phase TaB₂ is drawn in Fig. 1. Optimized lattice constants of hexagonal *P6/mmm* TaB₂ with LDA (GGA) are a = 3.061 (3.096)Å and c = 3.301 (3.346)Å, which match closely the experimental ones (a = 3.088 A, c = 3.241 A [16]; a = 3.082 A, c = 3.243 A [17]). Moreover, our calculated Young's modulus and shear modulus of *P6/mmm* phase TaB₂ with LDA (GGA) are 587 GPa (531 GPa) and 243 GPa (219 GPa), respectively, which also agree well with experimental data 551 and 228 GPa [20].

3. Results and discussions

We initially considered the structure competing of TaB₂ and IrB₂. This was done by performing first-principle calculations of TaB₂ and IrB₂ with considering a variety of structure types including ReB₂-like, OsB₂-like, AlB₂-like. The calculated lattice constants for TaB₂, TaB, IrB₂, and IrB, are listed in Table 1 together with the corresponding experimental results. It is clear that the predicted lattice parameters with GGA are larger than that with LDA, as the usual case. The calculated lattice parameters for P6/mmm phase TaB₂ with LDA are in excellent agreement with the experimental data [16,17], differing only by 0.87% (0.68%) and 1.85% (1.79%) in comparison with that of Ref. [16,17], respectively. Table 2 lists the calculated equilibrium volume, the relative total energy, the bulk modulus, and its pressure derivative of TaB₂ with the three structures and TaB with $P6_3/mmc$ phase. The bulk modulus and its pressure derivative are obtained by fitting pressures and cell volumes with the third-order Birch-Murnaghan equation of state [29]. From this table, it can be

Table 1

Calculated equilibrium lattice parameters a (Å), b (Å), c (Å) for TaB₂, TaB, IrB₂, and IrB.

			а	b	с
TaB ₂	P6/mmm	LDA	3.061		3.301
		GGA	3.096		3.346
		Expt. [16]	3.088		3.241
		Expt. [17]	3.082		3.243
	Pmmn	LDA	2.958	4.765	4.309
		GGA	3.002	4.824	4.355
	$P6_3/mmc$	LDA	2.951		7.983
		GGA	2.993		8.081
TaB	$P6_3/mmc$	LDA	3.369		4.761
		GGA	3.412		4.821
IrB ₂	Pmmn	LDA	3.113	4.487	3.993
		GGA	3.153	4.547	4.042
	$P6_3/mmc$	LDA	3.034		6.988
		GGA	3.072		7.074
	P6/mmm	LDA	3.080		3.180
		GGA	3.107		3.259
IrB	$P6_3/mmc$	LDA	3.474		3.902
		GGA	3.508		3.986

Table 2

Calculated cell volume (V in A^3), relative total energy (E in eV), bulk modulus (B in GPa), and its pressure derivative at zero pressure (B_1) of TaB₂ and TaB.

			V	Ε	В	B_1
TaB ₂	P6/mmm	LDA	26.67	0.00	334	4.12
		GGA	27.77	0.00	308	4.08
	Pmmn	LDA	30.37	1.24	273	3.60
		GGA	31.54	1.04	254	3.69
	$P6_3/mmc$	LDA	30.11	1.33	267	3.66
		GGA	31.34	1.16	245	3.79
TaB	$P6_3/mmc$	LDA			292	4.04
		GGA			267	4.07

V and E are of per chemical formula unit.

Table 3

Calculated cell volume (V in A^3), relative total energy (E in eV), bulk modulus (B in GPa), and its pressure derivative at zero pressure (B_1) of IrB₂ and IrB.

			V	Ε	В	B_1
IrB ₂	Pmmn	LDA	27.89	0.00	300	3.88
		GGA	28.97	0.00	276	3.89
	$P6_3/mmc$	LDA	27.86	0.13	257	4.88
		GGA	28.91	0.13	246	4.54
	P6/mmm	LDA	26.13	1.83	324	4.30
		GGA	27.25	1.78	289	4.34
IrB	$P6_3/mmc$	LDA			346	4.58
		GGA			309	4.52

V and *E* are of per chemical formula unit.

seen that the *P*6/*mmm* structure is more stable in energy than the other ones. Moreover, *P*6/*mmm* phase TaB₂ has the smallest cell volume among the three structures, which may result in the higher bulk modulus of the *P*6/*mmm* structure. The calculated bulk modulus for TaB with LDA and GGA are 291 and 267 GPa, respectively, which are lower than that of *P*6/*mmm* phase TaB₂. From Table 3, *Pmmn* phase IrB₂ is more stable in energy than the *P*6₃/*mmc* and *P*6/*mmm* ones. However, the cell volume of *Pmmn* phase IrB₂ is larger than the *P*6₃/*mmc* and *P*6/*mmm* ones, and its bulk modulus is slightly higher than that of *P*6₃/*mmc* phase but lower than the *P*6/*mmm* one. The calculated bulk modulus of IrB with LDA and GGA are 346 and 309 GPa, respectively, which are higher than that of IrB₂.

The mechanical stability is a necessary condition for a crystal to exist. In order to check the elastic stability of TaB₂, TaB, IrB₂, and IrB, their elastic constants were calculated by the strainstress method. A small finite strain was applied on the optimized structure and then the atomic position was optimized. Then, the elastic constants were obtained from the stress of the strained structure. Table 4 lists the calculated elastic constants for TaB₂ and TaB. The bulk and shear moduli in this table were calculated by the Voigt-Reuss-Hill approximation method [30]. From this table, the bulk modulus agrees with that obtained from the thirdorder Birch-Murnaghan equation of state. The shear modulus of P6/mmm phase TaB₂ is higher than the *Pmmn* one. An important reason for the high shear modulus of P6/mmm phase TaB₂ is that the polyhedra in the Pmmn structure are entirely linked by shared edges, whereas the polyhedra in *P6/mmm* phase share the faces and edges (as shown in Fig. 1) and this structure is expected to be more rigid with respect to shear stress. We calculated the eigenvalues of the elastic constant matrix of the three structures and found that all eigenvalues are positive for P6/mmm and Pmmn phases, which indicates that both P6/mmm and Pmmn structures of TaB₂ are elastically stable. The negative c_{66} (-95 GPa from both LDA and GGA) of $P6_3/mmc$ TaB₂ indicates that it is elastically unstable, and its elastic constants as well as the relevant data are no longer listed in Table 4. Moreover, the calculated Young's modulus 587 GPa (531 GPa) and shear modulus 243 GPa (219 GPa) of P6/mmm phase TaB2 with LDA (GGA) are in excellent agreement with the experimental data (E = 551 GPa, and G = 228 GPa) [20]. As seen in Table 4, P6/mmm TaB₂ has a smaller Poisson's ratio than the Pmmn phase, WB₂ (0.24 Ref. [1]), and OsB₂(0.27 Ref. [3]). Smaller Poisson's ratio implies that P6/mmm phase TaB₂ is relatively stable against shear. For TaB, the calculated bulk and shear moduli are smaller than that of P6/mmm phase TaB₂. From Table 5, the bulk modulus of IrB₂ agrees well with that obtained from the third-order Birch-Murnaghan equation of state. The shear modulus of IrB₂ is only about half of that for P6/mmm phase TaB₂. We also calculated the eigenvalues of the elastic constant matrix of the three structures and found that all eigenvalues are positive for $P6_3/mmc$ and Pmmn phases, which indicates that the P63/mmc and Pmmn structures of IrB_2 are both elastically stable. The negative c_{44} (-49 GPa from LDA and -61 GPa GGA) of $P6/mmm \text{ IrB}_2$ indicates that it is elastically unstable. The calculated bulk modulus 355 GPa (LDA) of IrB is even larger than that of P6/mmm TaB₂ (334 GPa with LDA), while its shear modulus 168 GPa (LDA) is significantly smaller than that of TaB₂ (243 GPa with LDA). Moreover, larger Poisson's ratio of 0.30 and lower value of G/B(0.46) for IrB exclude its potential superhard property. The phonon band structures of P6/mmm phase TaB2 under 0 and 50 GPa were computed and the results are shown in Fig. 2. The calculated phonon band structures have no soft mode at any

Table 4

Calculated elastic constants (in GPa), bulk modulus B (in GPa), shear modulus G (in GPa), Young's modulus (E in GPa), Poisson's ratio (v), and G/B of TaB₂ and TaB.

		<i>c</i> ₁₁	<i>c</i> ₁₂	<i>c</i> ₁₃	<i>c</i> ₂₂	C ₂₃	C ₃₃	C ₄₄	<i>c</i> ₅₅	<i>c</i> ₆₆	В	G	Е	v	G/B
TaB ₂ (<i>P</i> 6/ <i>mmm</i>)	LDA GGA Expt. [20]	648 598	152 145	232 214			486 442	235 208		248 227	334 308	243 219 551	587 531	0.21 0.21	0.73 0.71
TaB ₂ Pmmn TaB (P6 ₃ /mmc)	LDA GGA LDA GGA	428 418 471 441	189 163 197 176	116 102 209 188	477 456	140 127	704 660 449 417	233 219 282 259	56 78	206 202 137 133	275 255 291 267	160 172 208 196	402 421 504 472	0.26 0.22 0.21 0.21	0.58 0.67 0.71 0.73

Table 5

Calculated elastic constants (in GPa), bulk modulus B (in GPa), shear modulus G (in GPa), Young's modulus (E in GPa), Poisson's ratio (v), and G/B of IrB2 and IrB.

		<i>c</i> ₁₁	<i>c</i> ₁₂	<i>c</i> ₁₃	<i>C</i> ₂₂	C ₂₃	C ₃₃	<i>C</i> 44	<i>c</i> ₅₅	<i>c</i> ₆₆	В	G	Ε	v	G/B
IrB ₂ (Pmmn)	LDA	377	273	159	450	188	745	88	73	144	307	118	314	0.33	0.38
	GGA	345	241	139	414	170	669	62	67	137	274	104	277	0.33	0.38
IrB ₂ (PG_3/mmc)	LDA	331	221	283			775	140			305	113	302	0.34	0.37
	GGA	315	197	254			695	126			280	109	289	0.33	0.39
IrB (PG_3/mmc)	LDA	591	261	295			380	189			355	168	435	0.30	0.47
	GGA	525	235	264			338	164			317	146	377	0.30	0.46

Fig. 2. Calculated phonon band structure of hexagonal P6/mmm TaB₂. The special k points A, H, K, M, and L in the figure represent the points $(0, 0, \frac{1}{2}), (-\frac{1}{3}, \frac{2}{3}, \frac{1}{2}), (-\frac{1}{3}, \frac{2}{3}, 0), (0, \frac{1}{2}, 0), and (0, \frac{1}{2}, \frac{1}{2}), respectively.$

vectors, which confirms the stability of P6/mmm phase TaB₂ under 0 and 50 GPa. With increasing pressure, the vibrational bands of the optical part shift to higher frequencies, while the acoustic part has no obvious change.

As seen in Table 4, TaB₂ with the hexagonal P6/mmm structure have large bulk modulus 334 GPa (LDA) and large shear modulus 243 GPa (LDA). Hardness is a macroscopic concept. Besides the bulk and shear moduli, the elastic constant c_{44} is also an important parameter indirectly governing the indentation hardness. The elastic constant c_{44} of P6/mmm phase TaB₂ is calculated to be 235 GPa (LDA). This value is exceptionally high, as shown in Fig. 3, exceeding the counterparts of WB₂ [1], OsB₂ [3], WB₄ [9], ReC [31], OsN₂ [32], IrN₂ [33], and PtN₂ [34,35]. The elastic constant c_{44} of TaB₂ in hexagonal P6/mmm phase relates to lattice resistance against an applied $[11\overline{2}0]$ (0001) shear deformation. In order to calculate out the theoretical value of hardness and further understand the correlation between the hardness and c_{44} , we first employ the first-principle model of intrinsic hardness [36] to get the hardness of a specific bond. The formula for calculation is as follows:

$$H^{\mu}_{\nu}(\text{GPa}) = 740P^{\mu}(\nu^{\mu}_{h})^{-5/3} \tag{1}$$

where P^{μ} is Mulliken overlap population of μ -type bond and v_b^{μ} is the volume of bond of type μ . Then we obtain the material hardness using the following formula:

$$H_{\nu}(\text{GPa}) = [(H_{\nu}^{\mu_{1}})^{m_{1}}(H_{\nu}^{\mu_{2}})^{m_{2}}\cdots(H_{\nu}^{\mu_{n}})^{m_{n}}]^{1/m_{1}+m_{2}+\cdots+m_{n}}$$
(2)

where m_i is the bond number of type μ_i per unit volume. All the hardness calculations are performed with GGA. The calculated hardness of P6/mmm phase TaB₂ is 37.05 GPa, which is higher than the experimental data 25.6 ± 0.7 GPa [20]. Such a difference between the theoretical value and experiment may be attributed to the large loading force (0.5 kg used in the experiment) [20]. It is noteworthy that, under the same value of load (4.9 N), the measured hardness (25.6 GPa) [20] of TaB₂ is larger than that of ReB₂ (18.4 GPa) [21]. Moreover, our calculated hardness of ReB₂ employing the present method is 41.66 GPa, which is lower than

Fig. 3. The elastic constants of c_{44} for different compounds. The superscripts represent the corresponding references from which the data are taken.

Fig. 4. Hardness as a function of the elastic constants of c_{44} for TaB₂ and IrB₂. The c_{44} correspond to the values within GGA.

the experimental data 48 GPa (measured under a load of 0.49 N) [37] but higher than 37.0 GPa (under 0.72 N) [38]. Based on above analysis, we can predict that the calculated hardness (37.05 GPa) of TaB₂ probably correspond to the experimental data obtained under 0.49-0.72 N. So, it is not surprising that the calculated hardness is higher than the experimental data measured under 0.5 kg, i.e. 4.9 N. Thus, we hope there will be a uniform measurement standard and method for material hardness measuring. We suggest that the measured micro-hardness of a material be obtained from the steady value at high applied load. For IrB₂, the hardness (14.97 GPa) of the Pmmn structure is smaller than that of PG_3/mmc phase (26.65 GPa). The hardness as a function of the elastic constant c_{44} for P6/mmm, Pmmn TaB₂, and P6₃/mmc, Pmmn IrB₂ are plotted in Fig. 4. The data of hardness versus c_{44} lie along the same straight line, which prove that c_{44} is a better hardness predictor for transition-metal diborides.The calculated hardness of TaB and IrB are 23.09 and 12.36 GPa, respectively, which are basically proportional to the elastic constants of c_{44} . The relative directionality of the bonding in the material also have an important effect on its hardness and can be determined by the value of G/B [39]. The calculated ratio G/B for TaB_2 in P6/mmm phase (0.72) is much larger than WB₂ (0.63) [1], OsB₂ (0.50) [3], IrN₂ (0.66) [33], and PtN₂ (0.61) [34], indicating the more pronounced directional bonding between the ions in TaB₂ with the P6/mmm structure. The elastic anisotropy (A) of crystals is also important for their applications. The elastic anisotropy of the low-symmetry crystal can be described by the percentage anisotropy in compressibility (A_B) and shear (A_G) [39]. For A_B and A_G , a values of zero and 1 (100%) represent elastic isotropy and the largest anisotropy. For hexagonal P6/mmm TaB₂, the calculated A_B and A_G are 0.31% (0.34%) and 9.02% (8.96%) with LDA (GGA), indicating its little elastic anisotropy. The elastic constants have been used as predictors for high hardness in early DFT calculations. However, since material deformation at large strains usually results in a nonlinear stress-strain relation, it could lead to significant deviations from the simple extrapolation of equilibrium data [40]. Thus, there is reason to be cautiously optimistic about the super hardness estimated only from elastic parameters. The superhard property worked out by the elastic constants is to be further confirmed by calculating the ideal shear strength in the future work.

Shown in Fig. 5 is the calculated band structure with GGA of P6/mmm phase TaB₂. From this figure, it can be seen that some bands cross the Fermi level, which indicates the metallic behavior of P6/mmm phase TaB₂. The calculated total and partial density of states (DOS) proves that TaB₂ with the hexagonal and orthorhombic structures are all metallic. DOS of TaB₂ and IrB₂ with the three structures are plotted in Figs. 6 and 7. As seen in Fig. 6, DOS of P6/mmm TaB₂ is significantly different from that of

Fig. 5. Band structure of hexagonal *P*6/*mmm* TaB₂. The high symmetry *k* points A, H, K, M, and L in the figure represent the points $(0, 0, \frac{1}{2}), (-\frac{1}{3}, \frac{2}{3}, \frac{1}{2}), (-\frac{1}{3}, \frac{2}{3}, 0), (0, \frac{1}{2}, 0), and <math>(0, \frac{1}{2}, \frac{1}{2}), respectively.$

Fig. 6. Total and partial DOS of TaB_2 : (a) *P6/mmm* phase; (b) *Pmmn* phase; (c) $P6_3/mmc$. The Fermi level is at zero.

the $P6_3/mmc$ and Pmmn ones. Compared with the other two phases, the states around the Fermi level in the P6/mmm phase shift to the lower energy. From Fig. 7, the three phases of IrB₂ are also metallic for lack of energy gap near the Fermi level. To gain a more detailed insight into the bonding characters of P6/mmm TaB₂, we plot the charge density distribution in (0001) and (1120) planes, as shown in Fig. 8. From this figure, we can see a strong

Fig. 7. Total and partial DOS of IrB_2 : (a) *Pmmn* phase; (b) $P6_3/mmc$ phase; (c) P6/mmm. The Fermi level is at zero.

covalent π -bonding of B-hexagon in the (0001) plane, such a B-hexagon network can strongly resist against an applied [1120] (0001) shear deformation. From (1120) plane we can see some electrons between Ta and B atoms, indicating a strong directional covalent Ta–B bonding exists in hexagonal *P*6/*mmm* TaB₂. Furthermore, two neighbor boron atoms form a very strong covalent bond. It is emphasized that the formation of these directional covalent bonds leads to the increase in the hardness.

Fig. 9(a) shows the normalized volume–temperature diagram of P6/mmm TaB₂ within 0–1000 K range. From Fig. 9(a), it can be seen easily that the cell volume increases almost linearly when T > 300 K. Fig. 9(b) shows the normalized bulk modulus–temperature diagram of P6/mmm TaB₂. As shown in Fig. 9(b), it can be seen that the bulk modulus of TaB₂ decreases almost linearly with increasing temperature, which is consistent with the trend of the cell volume. In Fig. 9(c), we present the curve of the heat capacity (C_v) with temperature and pressure in the P6/mmm structure of TaB₂. It shows that when T < 1000 K, C_v is sensitive to both the temperature and pressure. This is due to the anharmonic approximations of the Debye model. However, when T > 1000 K, the anharmonic effect on C_v is suppressed, and C_v is very close to the Dulong–Petit limit.

4. Conclusion

In summary, the three phases of TaB_2 are metallic for lack of energy gap near the Fermi level, and P6/mmm phase TaB_2 is more stable than the other two phases. All positive eigenvalues of the elastic constant matrix confirms that both P6/mmm and Pmmnphases of TaB_2 are elastically stable. The calculated equilibrium structural parameters, shear modulus, and Young's modulus of TaB_2 are well consistent with the available experimental data. Our calculated hardness (37.05 GPa) of P6/mmm TaB₂ phase is larger

Fig. 8. (Color online) The valence electron density for P6/mmm phase TaB₂ in (0001) (left) and (1120) (right) planes. The bonding between B and B exhibits the strong directionality throughout the plane.

Fig. 9. (a) The variations of the cell volume for P6/mmm TaB₂ versus the temperature. (b) The variations of the bulk modulus for P6/mmm TaB₂ versus the temperature. (c) The heat capacity of P6/mmm TaB₂ at different temperature and pressure.

than the experimental value of 25.6 GPa, which may be attributed to the large loading force (0.5 kg) used in the experiment. So, we hope there will be a uniform measurement standard and method for material hardness measuring. The large G/B value of P6/mmmphase TaB₂ means strong directional bonding in it, which partially corresponds its high hardness. Moreover, the large c_{44} of TaB₂ also contributes to its high hardness. For IrB₂, our calculated results show that the *Pmmn* structure is the most stable phase in energy, and its hardness (14.97 GPa) is smaller than that of the $P6_3/mmc$ structure (26.65 GPa). For TaB and IrB, all positive eigenvalues of the elastic constant matrix confirm that they are both elastically stable in $P6_3/mmc$ phase. The calculated hardness for TaB and IrB are 23.09 and 12.36 GPa, respectively, which are much smaller than that of P6/mmm phase TaB₂.

Acknowledgments

This research was sponsored by the Program for Science and Technology Innovation Talents in Universities of Henan Province (no. 2009HASTIT003), Foundation for University Key Young Teacher by Henan Province, the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China, and Foundation of Science and Technology Department of Henan Province (no. 082300410010).

References

- [1] X.F. Hao, Y.H. Xu, Z.J. Wu, D.F. Zhou, X.J. Liu, X.Q. Cao, J. Meng, Phys. Rev. B 74 (2006) 224112.
- [2] R.W. Cumberland, M.B. Weinberger, J.J. Gilman, S.M. Clark, S.H. Tolbert, R.B. Kaner, J. Am. Chem. Soc. 127 (2005) 7264.
- [3] H.Y. Gou, L. Hou, J.W. Zhang, H. Li, G.F. Sun, F.M. Gao, Appl. Phys. Lett. 88 (2006) 221904.
- [4] S. Chiodo, H.J. Gotsis, N. Russo, E. Sicilia, Chem. Phys. Lett. 425 (2006) 311.
- [5] M. Hebbache, L. Stuparević, D. Živković, Solid State Commun. 139 (2006) 227.
 - [6] Z.Y. Chen, H.J. Xiang, J.L. Yang, J.G. Hou, Q.S. Zhu, Phys. Rev. B 74 (2006) 012102
 - [7] Y.X. Wang, Appl. Phys. Lett. 91 (2007) 101904.
- [8] Y.C. Liang, B. Zhang, Phys. Rev. B 76 (2007) 132101.
- [9] M. Wang, Y.W. Li, T. Cui, Y.M. Ma, G.T. Zou, Appl. Phys. Lett. 93 (2008) 101905.
- [10] X.L. Zhu, D.H. Li, X.L. Cheng, Solid State Commun. 147 (2008) 301.
- [11] Q.F. Gu, G. Krauss, W. Steurer, Adv. Mater. 20 (2008) 3620.
- [12] S.J. La Placa, B. Post, Acta Crystallogr. 15 (1962) 97.
- [13] T. Lundström, Ark. Kemi 30 (1969) 115.
- [14] H.P. Woods, F.E. Wawner Jr., B.G. Fox, Science 151 (1966) 75.
- [15] P. Schwarzkopf, R. Kieffer, W. Leszynski, F. Benesovsky, Refractory Hard Metals: Borides, Carbides, Nitrides, and Silicides, The Macmillan Company, New York, 1953.
- [16] J.T. Norton, H. Blumenthal, S.J. Sindeband, Trans. AIME 185 (1949) 749.
- [17] D. Kaczorowski, A.J. Zaleski, O.J. Żogal, J. Klamut, cond-mat/0103571, 2001.
- [18] V.I. Matkovich, G.V. Samsonov, P. Hagenmuller, T. Lundstrom, Boron and Refractory Borides, Spring, Berlin, Heidelberg, New York, 1977.
- [19] R.A. Cutler, in: S.J. Schneider (Ed.), Ceramics and Glasses: Engineered Materials Handbook, vol. 4, ASM International, USA, 1991, p. 787.
- 20] X.H. Zhang, G.E. Hilmas, W.G. Fahrenholtz, Math. Lett. 62 (2008) 4251.
- [21] J.Q. Qin, D.W. He, J.H. Wang, L.M. Fang, L. Lei, Y.J. Li, J. Hu, Z.L. Kou, Y. Bi, Adv. Mater. 20 (2008) 1.
- [22] G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758.
- [23] P.E. Blöchl, Phys. Rev. B 50 (1994) 17953
- [24] G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558
- [25] G. Dresse, J. Hafner, J. Phys. Condens. Matter 6 (1994) 8245.
- [26] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169.
- [27] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
- [28] D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45 (1980) 566.
- [29] F. Birch, Phys. Rev. 71 (1947) 809.
- [30] R. Hill, Proc. Phys. Soc. London 65 (1952) 349.

- [31] Y.X. Wang, Phys. Status Solidi 2 (2008) 126.
- [32] Y.X. Wang, M. Arai, T. Sasaki, Appl. Phys. Lett. 90 (2007) 061922.
 [33] Y.X. Wang, M. Arai, T. Sasaki, C.Z. Fan, Phys. Rev. B 75 (2007) 104110.
 [34] R. Yu, Q. Zhan, X.F. Zhang, Appl. Phys. Lett. 88 (2006) 051913.
- [35] H.Y. Gou, L. Hou, J.W. Zhang, G.F. Sun, L.H. Gao, F.M. Gao, Appl. Phys. Lett. 89
- (2006) 141910. [36] F.M. Gao, Phys. Rev. B 73 (2006) 132104.

- [37] H.Y. Chung, M.B. Weinberger, J.B. Levine, A. Kavner, J.M. Yang, S.H. Tolbert, R.B. Kaner, Science 316 (2007) 436.
- [38] H.Y. Chung, M.B. Weinberger, J.M. Yang, S.H. Tolbert, R.B. Kaner, Appl. Phys. Lett. 92 (2008) 261904. [39] P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, J. Appl.
- Phys. 84 (1998) 4891.
- [40] Y. Zhang, H. Sun, C.F. Chen, Phys. Rev. B 73 (2006) 064109.